Basics of Organic Chemistry Bonding and Physical Properties

Marks: 20

Organic Chemist's Periodic Table

Group	C																
1A																	8A
н	2A											3A	4A	5A	6A	7A	He
Li	Be											В	С	N	ο	F	Ne
Na	Mg											AI	Si	Р	S	CI	Ar
к	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac									150						

© 2007 Thomson Higher Education

Nucleus is a Tiny Fraction of the Volume of an Atom

Nucleus (protons + neutrons)

Volume around nucleus occupied by orbiting electrons

© 2004 Thomson/Brooks Cole

Shape of 's' orbital :

s-orbital is spherical with the nucleus at its centre

- p orbital has the approximate shape of a pair of lobes on opposite sides of the nucleus, or a somewhat dumbbell shape.
- □ Electron in a *p* orbital has equal probability of being in either half.

Valence Bond Theory

• Hybridization is a major player in this approach to bonding.

• There are two ways orbitals can overlap to form bonds between atoms.

Sigma (σ) Bonds

- Sigma bonds are characterized by
 - Head-to-head overlap.
 - Cylindrical symmetry of electron density about the internuclear axis.

σ (sigma) bond

- A sigma bond can be formed by the overlap of:
 - -s and p orbitals
 - -two p orbitals
 - -two s orbitals
 - -two hybrid orbitals
 - an s orbital and a hybrid orbital

Sigma Bond Formation

π (pi bond)

• A covalent bond formed by the parallel (side by side) overlap of two **p** orbitals.

π bonds are characterized by electron density above and below the inter-nuclear axis.

Bonding Types

- Two types of bonds result from orbital overlap:
- sigma (σ) bonds
 - from head-on overlap
 - lie along the bond axis
 - account for the first bond
- pi (π)bonds
 - pi bonds are perpendicular to bond axis
 - account for the second and third bonds in a multiple bond

How can a drawing show where an electron is most likely to be found?

Drawings can show molecular orbitals, which are the areas where bonding electrons are most likely to be found.

Single Bonds

Single bonds are always σ bonds, because σ overlap is greater, resulting in a stronger bond and more energy lowering.

Multiple Bonds

In a multiple bond one of the bonds is a σ bond and the rest are π bonds.

Multiple Bonds

- In a molecule like formaldehyde (shown at left) an sp^2 orbital on carbon overlaps in σ fashion with the corresponding orbital on the oxygen.
- The unhybridized p orbitals overlap in π fashion.

Multiple Bonds

In triple bonds, as in acetylene, two *sp* orbitals form a σ bond between the carbons, and two pairs of *p* orbitals overlap in π fashion to form the two π bonds.

Sigma (σ) and Pi Bonds (π)

- Single bond 1 sigma bond
- Double bond 1 sigma bond and 1 pi bond

Triple bond 1 sigma bond and 2 pi bonds

How many σ and π bonds are in the acetic acid (vinegar) molecule CH₃COOH?

 σ bonds = 6+ 1 = 7 π bonds = 1

Hybridization

- Experimentally, we observe that the four bonds in methane (CH_4) are equivalent and point towards the four corners of a tetrahedron
 - This does not correspond to the notion that we have one 2s orbital and three 2p orbitals on the C as we would expect to have one bond (involving the 2s orbital of C) different from the other three
 - Also, we need to have orbitals that point to all four corners of a tetrahedron rather than lying along the x, y, and z axes
 - We use the concept of hybridization to explain the tetrahedral geometry around the C
- Hybridization is the combination of atomic orbitals within an atom to form a new set of hybrid orbitals
- In the Valence Bond model, hybrid orbitals (those orbitals obtained when two or more non-equivalent orbitals of the same atom combine) form lone pairs or covalent bonds with other atoms

Hybridization in VB Theory

- Atomic orbitals are mixed to allow formation of bonds that have realistic bond angles
- The newly mixed orbitals that result are called "hybrid orbitals" with specified shapes:

Hybridization	Bond Angles
sp	180°
sp^2	120°
sp ³	109.5°

How are sp³ hybrid orbitals formed?

is, they are of the same E, higher than s but lower than p.

Electron Configuration of Carbon

Core Valence

Tetrahderal Geometry

Methane Representations

In Ground State

2 bonding sites, 1 lone pair

sp³ Hybridization

Hybridization of 1s and 3p Orbitals – sp³

sp³ is Tetrahedral Geometry Methane

 sp^3 - $sp^3 \sigma$ bond

sp³ carbon

 sp^3 carbon

@ 2004 Thomson/Brooks Cole

Orbital Depiction of Ethane, C_2H_6 , the σ bond

How are sp² hybrid orbitals formed?

If we take s and just two p orbitals, we form three sp² hybrid orbitals leaving one pure p untouched.

These three sp² hybrid orbitals are planar with angles of 120°.

The un-hybridized p (pure p) are used in double and triple bonds.

sp² Hybridization

Hybridization of 1s and 2p Orbitals – sp²

An sp² hybridized atom

$The \ \pi \ bond$ Overlap of 2 parallel p Orbitals

Ethylene CH₂=CH₂

Views of Ethylene, C₂H₄

 σ bond framework (viewed from above the plane)

 π bond (viewed from alongside the plane)

ethylene

Side view

Ethylene

Top view

©2004 Thomson - Brooks/Cole

Ethylene

@ 2004 Thomson/Brooks Cole

Orbital diagram of ethylene

How are sp hybrid orbitals formed?

These two sp hybrid orbitals are linear with angles of 180°

sp hybridization

Acetylene, C₂H₂, 1 s bond 2 perpendicular p bonds

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Bonding in Acetylene

- The sp hybridized orbitals form a σ C-C bond and two σ C-H bonds
- The $2p_y$ and $2p_z$ orbitals form two π bonds between the two carbons

Hybridization around Carbon

Hybridization

4σ bondsp3 3σ bond + 1π bond sp^2 2σ bond + 2π bondsp

Orbital picture diagram of acetonitrile

What is the hybridization of each non-hydrogen atom in acetonitrile? Draw the bonding orbitals (leaving out the small back lobes).

H₃C-C=N: a b C_a: sp^3 (4 σ -bonds) C_b: sp (2 σ -bonds) N: sp (1 σ -bond, 1 lone pair)

Orbital picture diagram of acrylonitrile

Orbital picture diagram of carbonyl compounds

Always start with hybridization. Give the hybridization of each C and each O. Give the bond angles. 9 σ bonds How many σ bonds are there? 3π bonds How many π bonds are there? Ans. C1 = sp C2 = sp $C3 = sp^2$ $C4 = sp^3 O = sp^3$ $C1-C2-C3 = 180^{\circ}$ $C2-C3-O = 120^{\circ}$ $C2-C3=O = 120^{\circ}$ $O-C4-H = 109.5^{\circ}$

Hybridization: Examples

