

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2023-24

CEMACOR06T-CHEMISTRY (CC6)

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer any three questions taking one from each unit

UNIT-I

1. (a) State the basis of 'radius ratio rule' for ionic compounds. Calculate the limiting radius ratio for tetrahedral lattice surface.	1+3
(b) Are the bond angles ∠HCH and ∠FCF in CH ₂ F ₂ molecule equal? Give reasons in support of your answer.	2
(e) Using VSEPR theory, predict the shape of PCl ₂ F ₃ . Indicate the state of hybridisation of the central atom.	2
(d) Calculate the Lattice energy of ThO ₂ using Born Lande equation. Madelung Constant = 2.519, Born Exponent for Th ⁴⁺ is 14. Radii of Th ⁴⁺ = 108 pm and O ²⁻ = 126 pm.	3
(e) Comment on the following dipole moments:	3
$NH_3 = 1.4 D$, $NF_3 = 0.2 D$	
(f) CsF is more soluble in water than CsI, while LiF is less soluble than LiI. — Explain.	2
2. (a) Derive Born-Lande equation.	3
(b) Using Born-Haber cycle and the following - calculate the electron affinity of chlorine:	3
$\Delta H_f (RbCl) = -102.9 \text{ Kcal.mol}^{-1}$	
$IP (Rb) = 95 \text{ Kcal.mol}^{-1}$	
$\Delta H_{\text{sub}} (Rb) = -20.5 \text{ Kcal.mol}^{-1}$	
$D(Cl_2) = 54 \text{ Kcal.mol}^{-1}$	
$U (RbCl) = -166 \text{ Kcal.mol}^{-1}$	
(c) What do you mean by polarizing power and polarizability? Why AgF is soluble in water while AgI is almost insoluble?	1+1+1
(d) Why melting point of MgCl ₂ is less than that of CaCl ₂ ?	2
(e) Explain Schottky and Frenkel defects with example.	3
(f) Predict the shape of the molecules:	2
(i) XeO_2F_2 (ii) BrF_4^-	

UNIT-II

3. (a)	Construct the MO energy level diagram of H ₂ O molecule and hence predict the nature of bonds formed.	3+1
(b)	What do you mean by dipole-induced dipole interaction? Cite one example.	2
(c)	CO and N ₂ are isoelectronic but they differ greatly in donor properties. — Explain.	2
(d)	ZnO white when cold but looks yelfow when hot. — Explain.	2
(e)	The electrical conductivity of pure germanium is enhanced when doped with arsenic. — Explain.	2
(f)	Explain the paramagnetic nature of O ₂ molecule using MO concept.	2
(g)	The dielectric constant of HCN is much greater than that of H_2O , though the H-bond strength in H_2O is greater than that of HCN. — Justify.	2
4. (a)	Draw the MO diagram of HF and find out the number of non-bonded electrons. Explain the stability of H ₂ F ⁺ in light of MO theory.	2+2
(b)	Helium does not form diatomic molecule. — Justify.	(2)
(c)	B ₂ and O ₂ are paramagnetic in nature. — Explain MO diagram.	3
(d)	Explain n-type and p-type semiconductors with suitable example.	3
(e)	(CH ₃) ₂ O is completely miscible in water while (CH ₃) ₂ S is partly soluble. — Why?	2
(f)	Arrange the following molecules / ions with their increasing bond order:	(2)
	N_2 , N_2^+ and N_2^-	
	UNIT-III	
5. (a)	Why D ₂ O instead of H ₂ O in the nuclear reactor to thermalise the fast neutrons?	1
(b)	Define half life period and average life period. Show that $t_{1/2} = 0.693 t_{av}$.	2+2
(c)	The nuclear bonding energy per nucleon ${}_{6}^{12}$ C is 7.683 eV. The isotopic mass for ${}_{6}^{12}$ C is 12.00 amu. Find the mass defect and mass of six protons and six neutrons.	3
/	The isotopic masses of two atoms, $^{56}X_{26}$ and $^{139}Y_{57}$ are 55.9521244 and 138.9621461 a.m.u. respectively. Compare their nuclear stability. [Given: mass of electron = 0.0005486, proton = 1.0072765 and neutron = 1.0086650 a.m.u.]	3
(P)	Account for the $(n-n)$ nuclear force π -meson field theory.	2
(c)	Write down balanced nuclear reactions for the conversion of $^{98}Mo_{42}$ to $^{99}Te_{43}$ by the process that include neutron capture and subsequent β -decay.	2
(a)	What do you mean by magic number?	1

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2023-24

CEMACOR05T-CHEMISTRY (CC5)

PHYSICAL CHEMISTRY-II

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer any three questions taking one from each unit

UNIT-I

1+1 (a) What is the dimension of Diffusion coefficient? Write down Fick's first law of diffusion. (b) The densities of acetone and water at 20°C are 0.792 g/cm³ and 0.9982 g/cm³, 3 respectively. The viscosity of water is 1.002×10⁻³ Pa.s at 20°C. If water requires 120.5 sec to run between the marks on a viscometer and acetone requires 49.5 sec, what is the viscosity of acetone? (c) Write down Kohlrausch's law of migration of Ions. At 25°C the molar ionic 1+2 conductivities of Na⁺ and K⁺ are 5.01 mSm²mol⁻¹, and 7.35 mSm²mol⁻¹, respectively. What are their mobilities? (d) For a strong electrolyte HCl, will there be any change in equivalent conductance with 2 dilution? Justify your answer. (e) Define transference number. Why H⁺ has very high transference number? 1+1 (a) Molecular explanation for dependence of viscosity coefficient on the temperature for 2 gases is different to that for liquids. — Explain. (b) A metal ball of density 7.9 g/cubic centimeter and 4 mm diameter requires 55 seconds to 3 fall a distance of 1 meter through an oil of density 1.1 g/cubic centimeter. Neglecting the correction due to the viscometer tube, calculate the viscosity of the oil in poise. (c) What is Debye-Falkenhagen effect? 2 (d) The boundary of a HCl solution (conc. 0.011N) with Lithium chloride solution moved 2 7.5 cms in a capillary tube of radius 5 mm. When a current of 11.5 milliamperes were passed for 12 minutes. Calculate the transport number of H⁺ ion. (e) Give the Schematic conductometric titration curve for titration of aqueous solution of 3 sodium acetate by hydrochloric acid conductometrically. Give explanations.

UNIT-II

- 3. (a) Show that, $\left(\frac{\partial(\Delta\mu_i/T)}{\partial T}\right)_{P,\,n_j} = -\frac{\Delta\overline{H}_i}{T^2}$, the letters have their usual meaning.

 (b) Derive the Gibbs-Duhem equation.

 (c) What do you mean by 'fugacity' of gas? Show that for a pure real gas its fugacity (f) at 1+3 moderate pressure can be expressed as $f \cong \frac{P^2\overline{V}}{RT}$ [\overline{V} = molar volume of the gas].
 - (d) The chemical potential of a constituent in a homogeneous mixture is defined as 2+2

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T_i, P_i, n}$$

CBCS/B.Sc./Hons./3rd Sem./CEMACOR05T/2023-24

Show that it may be expressed as

(i)
$$\mu_i = \left(\frac{\partial H}{\partial n_i}\right)_{S, P, n}$$
 (ii) $\mu_i = \left(\frac{\partial A}{\partial n_i}\right)_{V, T, n}$

- (e) What do you mean by Ideal solution? How is Raoult's law modified so as to describe the vapor pressure of real solutions?
- 4. (a) Chemical potential is a measure of escaping tendency Justify or criticise.

(b) Prove that
$$\left[\frac{\partial (G/T)}{\partial (1/T)}\right]_P = H$$
.

- (c) Chemical potential μ and standard chemical potential μ^* of a real gas is related as $\mu = \mu^* + RT \ln f$, where 'f' is the fugacity. Comment on the pressure and temperature dependence of μ and μ^* .
- (d) 'The partial molar volume of all the gases in a mixture of ideal gases has the same value.' Justify or criticise.
- (e) Calculate the changes in the thermodynamic quantities G, S, H and V for mixing of $\frac{1}{2}$ mole of oxygen with $\frac{1}{2}$ mole of nitrogen at 25°C, assuming the gases to behave ideally.
- (f) Draw the plot of $\ln K_P$ versus 1/T of an endothermic reaction with $\Delta C_P = 0$ for the reaction.

UNIT-III

- 5. (a) Given that mass of electron is 9.109×10^{-31} kg and speed of light is 2.998×10^{8} m.sec⁻¹. 2 Calculate the de Broglie wavelength of an electron travelling 2.00% of the speed of light.
 - (b) Show that $e^{\alpha x}$ is an eigenfunction of the operator $\frac{d^n}{dx^n}$. What is the eigenvalue, 2+1+1 when n is even number? Is there any difference in eigenvalue if n is odd number?
 - (c) Write down the Planck distribution for black body radiation and show that under particular condition it reduces to Rayleigh-Jeans law.
 - (d) If ψ_1 and ψ_2 describe a twofold degenerate state with eigenvalue 'a' then any linear combination of ψ_1 and ψ_2 is also an eigenfunction with eigenvalue 'a' for a linear operator. Justify.
- 6. (a) Show that two eigenfunctions belonging to different eigenvalues of a Hermitian operator are orthogonal.
 - (b) What is the wave function of a free electron? Calculate average position of a particle in box of length 10 nm.
 - (c) Show that $[\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x$.
 - (d) The most commonly occurring continuous probability distribution is the Gaussian or Normal distribution given by $f(x) dx = ce^{-x^2/2a^2} dx$ ($-\infty \le x \le \infty$). Find c.

[Given: $\int_{0}^{\infty} e^{-bx^2} dx = \frac{1}{2} \left(\frac{\pi}{b}\right)^{1/2}, \ b > 0, \ a, \ b, \ c \text{ are constants.}$ The normalisation

condition is,
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
.]

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2023-24

CEMACOR07T-CHEMISTRY (CC7)

Time Allotted: 2 Hours

Full Marks: 40

2

2+2

2

2

2

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer any four questions taking one from each unit

UNIT-I

1. (a) Give the structural formula for the alkene that gives the following ozonolysis product:

(b) How can you carry out the following transformations?

- (c) Singlet carbene adds to *cis*-2-butene in a stereospecific manner whereas triplet carbene does not. Explain.
- (d) Allene reacts with aqueous H₂SO₄ to form acetone and not allyl alcohol. Explain the fact.
- 2. (a) Mention the appropriate reagents for the following transformations.

$$PhCH_2 - C \equiv CH$$

$$PhCH_2 - COCH_3$$

$$Ph - CH_2 - CH_2 - CH_0$$

- (b) What products are expected in the reaction of 1-hexene with NBS in CCl₄ in presence of peroxides? — Explain.
- (c) Addition of HCl to 3,3-dimethyl-but-1-ene gives two isomeric alkyl chlorides. — Explain.
- (d) Explain mechanistically Kharasch effect with suitable example.

2

3

3

CBCS/B.Sc./Hons./3rd Sem./CEMACOR07T/2023-24

UNIT-II

3

2

 $2 \times 2 = 4$

3. (a) Write down the possible products formed in the following reaction. Which would be the major product? Explain with mechanism.

CH₃

NaNH₂ in

lig. NH₃

- (b) Predict the favoured position of aromatic electrophilic substitution of the forcompounds and justify your answer in each case:
 - (i) $Ph CH = CH CO_2H$ (ii) $Ph CO_2H$ (iii) Ph C O Ph
- 4. (a) Predict the product(s) of the following reaction with plausible mechanism. (Any two): 2+2

(i)
$$H_3C$$

Conc. HNO_3

Conc. H_2SO_4

(ii) 2,4-Dinitrochlorobenzene

Phenyl hydrazine

 Δ

(iii)

HO

OH

I. CH_3CN , $HC1/Anh$. $ZnCl_2$

II. H_3O^*

- OH

 (b) Explain the following fact.
 - Anisole affords o-nitroanisole with nitric acid and acetic anhydride mixture.

UNIT-III

5. (a) Identify the products in the following sequence of reactions and suggest mechanism.

PhCHO $\xrightarrow{\text{(CH_3CO)}_2\text{O, NaOAc, Heat}} A \xrightarrow{\text{H}_2, \text{ Pd/C, MeOH}} B \xrightarrow{\text{SOCI}_2, \text{ AlCI}_3, \text{ Heat}} C$

- (b) Acetylation with acetyl chloride requires dry condition but benzoylation is carried out in aqueous alkaline solution. Explain.
- out in aqueous alkaline solution. Explain.

 (c) Convert the following:
 - (i) Ph-CHO PhCDO

CBCS/B.Sc./Hons/3rd Sem./CEMACOR07T/2023-24

- (d) Explain the mechanism of alkaline hydrolysis of the following O¹⁸ labelled esters in ordinary water (H₂O¹⁶) and indicate the distribution of O¹⁸ in the products in each case:
- 2+2

(e) Identify the products of the following reactions:

2+2

(i) $CH_3CHO + HCHO (excess) \xrightarrow{Ca(OH)_2}$?

6. (a) What will be the product for the following reaction? Give mechanism.

3

$$H$$
 + HO OH N A

(b) Give the reagents for the following conversions.

1+1

$$C_6H_5 - C_H = C_7 - CHO$$
 $C_6H_5 - C_1 = C_7 - CH_2OH$
 $C_6H_5 - C_1 = C_7 - CH_2OH$
 $C_6H_5 - C_1 = C_7 - CH_2OH$

(c) Account for the following observations:

2+2 +3+2

- (i) In the Perkin reaction of benzaldehyde with Ac₂O and NaOAc, little styrene is obtained although cinnamic acid does not decarboxylate under the reaction conditions.
- (ii) Benzoin gives the compound [A] when treated with p-methylbenzaldehyde in presence of KCN / EtOH.

- (iii) 1,3-Dithiane, as protected carbonyl, is not deprotected to the corresponding carbonyl compound with acid or alkali, but in the presence of HgCl₂, it is cleaved accordingly.
- (iv) Rate of reduction of a ketone by LiAlH₄ decreases when crown ether (12-Crown-4) is added to the reaction mixture.
- (d) How can you achieve the following transformations? (Any two)

 $2 \times 2 = 4$

- (ii) Benzaldehyde ——— PhCH₂CHO
- (iii) CH₃COCH₂CO₂Et → CH₃CH₂COCH₂CO₂Et

CBCS/B.Sc./Hons./3rd Sem./CEMACOR07T/2023-24

UNIT-IV

7. (a) Identify the products in the following reaction and explain.

 $1\frac{1}{2}+1\frac{1}{2}$

(b) Outline the best possible route for the preparation of 2-pentene starting with ethanol and 1-propanol via a Grignard reagent.

3

8. (a) Comment on the following reaction sequence:

3

$$_{\text{HO}}$$
 $_{\text{CO}_2\text{Et}}$
 $\xrightarrow{\text{RMgX}}$? $\xrightarrow{\text{RMgX}}$? $\xrightarrow{\text{RMgX}}$? $\xrightarrow{\text{RMgX}}$? $\xrightarrow{\text{(2 equiv)}}$?

2

_

$$PhC(CH_3) = C(CH_3)CO_2Et$$

(c) Write the product when an organolithium compound (RLi) is added to dry ice.

1

