

MICROBIOLOGY

PAPER-MCBA-V-(A+B)

Time Allotted: 4 Hours

Full Marks: 100

 $2 \times 5 = 10$

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Use separate answer books for each Group.

GROUP-A

Answer Question No. 1 and any four from the rest

1.	Answer	anv <i>five</i>	questions	from	the	folloy	wing:
1.	1 1115 00 01	uny jeve	questions	nom	une	10110	<i>"</i> mg.

- (a) What do you mean by mutation rate?
- (b) What is relative frequency?
- (c) The mode of a series is 26.1 and its average is 24.6. Find the median of the series.
- (d) What is null hypothesis?
- (e) The G+C content of phage T_3 is 53%. What would be the G+C content of the T_3 mRNA?
- (f) What are LINEs and SINEs?
- (g) Can hydroxylamine treatment reverse non-sense mutation? Justify your answer.
- (h) Classify 'variables' in relation to biostatistics with suitable example.

2.	(a)	When F^+ cell is mixed with F^- cell, all F^+ cells are generated, but when Hfr cell is mixed with F^- cell, the later remains F^- cell. Justify your answer.	2
	(b)	Design an experiment to determine the origin of replication of F plasmid.	4
	(c)	Draw and explain 'Time of entry curve' of interrupted mating technique.	4
3.	(a)	Describe the composition of nucleosome.	4
	(b)	The linear chromosome of phage T_2 is 50 µm long. The chromosome consists of double stranded DNA with 0.34 nm between each base pair. How many base pairs does a chromosome of phage T_2 contain?	3
	(c)	If a virus particle contains 2,00,000 bp of double stranded DNA, how many complete 360° turns occur in its genome?	3

B.Sc./Part-III/Hons./MCBA-V-(A+B)/2019

4.	(a)	Name any two physical and any two chemical mutagens? What are transition and transversion?	2+2
	(b)	What do you mean by	2
		(i) silent mutation	
		(ii) non-sense mutation?	
	(c)	Explain the Ames Test for mutagenesis.	4
5	(a)	Explain the methyl-directed mismatch repair.	3
5.	. /	Why is SOS repair is called error-prone repair?	2
	. ,	What do you mean by	2.5+2.5
	(C)	(i) Recombinational repair	2.3+2.3
		(ii) Excision repair?	
6.	(a)	Comment on the genophore of prokaryote.	3
	(b)	What is 'Centromere'? Describe its functional role.	1+2
	(c)	What are 'Pseudogenes'?	2
	(d)	State the role of Mu phage in transposon.	2
7.	(a)	Explain the term 'Statistical error' with example.	2
	(b)	Calculate the standard error of mean using the data of the number of bacterial colonies observed by 60 students:	4
		No. of colony: 156-160 161-165 166-170 171-175 176-180	
		Frequency : 4 14 25 11 6	
	(c)	Crossing a grey bodied scarlet eyed Drosophila with a black bodied red eyed one produced all grey bodied red eyed flies in the F_1 generation. On crossing the F_1 flies, the F_2 generation gave the following phenotypes:	4
		Grey bodied red eyed $=$ 360	
		Black bodied red eyed $= 130$	
		Grey bodied scarlet eyed $= 120$	
		Black bodied scarlet eyed $= 40$.	
		Do the data fit with the Mendelain 9: 3: 3: 1 distribution?	
		[Critical χ^2 value: $\chi^2_{(0.05,3)} = 7.82$]	
8	(2)	Design an experiment to prove that single-stranded DNA enters during	3
0.	(u)	transformation.	5
	(b)	Differentiate between homologous recombination and site-specific recombination.	2
	(c)	What are autosomes?	1

B.Sc./Part-III/Hons./MCBA-V-(A+B)/2019

(d) In a transformation experiment, the donor strain was $A^+ B^- C^+$ and the recipient was $A^- B^+ C^-$. During plating experiments, following numbers of transformation were obtained:

$$A^{+}B^{-}C^{+} = 12, A^{+}B^{-}C^{-} = 3, A^{+}B^{+}C^{+} = 100;$$

 $A^{+}B^{+}C^{-} = 135, A^{-}B^{-}C^{+} = 13, A^{-}B^{+}C^{+} = 142.$

Deduce the gene order.

GROUP-B

Answer Question No. 9 and any *four* from the rest.

9. Answer any *five* questions from the following:

- (b) What are expression vectors?
- (c) What is the specific function of Terminal Deoxynucleotidyl Transferase?
- (d) Define Idiophase.
- (e) Which microbial cells can be preserved by Lyophilization?
- (f) What is a soy meal?
- (g) What is Episome?
- (h) What is a binary vector?
- (i) Why lambda replacement vector is called so?

10.(a)	How is genomic library created? What should be the average DNA fragment length for genomic library preparation? Why?	3+1+3
(b)	Compare the use of Phage Lambda and Cosmids for construction of gene libraries.	3
11.	"Amino acids are often produced in large scale in the industries". Discuss the 2 microbial strains, media used, biosynthesis, downstreaming, and uses of any one amino acid production studied by you.	2+2+2+2+2
12.(a)	Mention the specific temperatures for 'annealing' and 'extension of primers' during PCR with reasons.	2+2
(b)	List down the basic requirements for amplification of a DNA segment using	2

- (b) List down the basic requirements for amplification of a DNA segment using PCR technique.
- (c) How can PCR act as an important tool in forensic investigations? 2
- (d) What is the disadvantage of using Taq polymerase for PCR?

3

2

 $2 \times 5 = 10$

B.Sc./Part-III/Hons./MCBA-V-(A+B)/2019

13 (a)	What is Feature mapping?	2
	What is a non-autonomous MITES?	2
	Why single locus probes are useful in DNA finger printing over multiple locus	2
(C)	probes?	5
(d)	What are Helitrons? State their uses.	3
14.(a)	Why agitation and aeration is a problem in amylase production?	2×5 = 10
(b)	What is SPC? Give example.	
(c)	Name the organism used for industrial production of Vit B ₂ and Lysine.	
(d)	Why sulfur dioxide is used in vinegar production?	
(e)	Why charcoal treatment is applied in penicillin production?	
15.	Write short notes on any <i>four</i> of the following:	$2.5 \times 4 = 10$
(a)	Fed batch mode of fermentation	
(b)	Chemostat	
(c)	Preservation by Liquid Nitrogen	
(d)	AFLP	
(e)	Sanger's sequencing	
(f)	RACE	
16.(a)	What are the advantages of the carrier binding mode of immobilization? What properties are essential for an ideal carrier?	1+2
(b)	Explain the role of genetic engineering in clinical application with at least one specific example.	3
(c)	What are biopesticides? How is <i>Bacillus thuringiensis</i> useful as a biopesticide? Name two biopesticide other than <i>B. thuringiensis</i> .	1+2+1

3076

____×____